SCREEN CHANNEL LOUDSPEAKERS

Acheron Designer

Acheron Studio

Acheron System
At the heart of Meyer Sound’s EXP line of cinema products are the Acheron® high-performance screen channel loudspeakers. The Acheron Designer is the most compact of the Acheron models, making it an excellent choice for sound design suites, screening rooms, private theatres, and small commercial theatres. Optimized for installation behind perforated screens, the Acheron Designer combines the advantages of self-powered technology and innovative horn design to deliver exceptional, precise coverage for the left, right, and center sound channels for cinema. The Acheron Designer uses the same patent-pending horn technology and high-frequency compression driver as the other Acheron models, delivering the same 38 Hz to 17 kHz frequency response. This consistency of fidelity between Acheron models ensures that soundtracks monitored with the Acheron Designer translate accurately when played back in larger rooms with the Acheron 100, Acheron 80, Acheron Studio, or other calibrated cinema system.

Designed specifically for cinema, the Acheron horn features a very soft roll-off beyond its 80-degree horizontal by 50-degree vertical coverage pattern. The extremely well-behaved horn ensures an accurate acoustic crossover and consistent vertical coverage pattern through the critical crossover range between the low- and high-frequency drivers. The optimized crossover point places most of the dialog in the horn, which is ideal for cinema applications. Designed and manufactured at Meyer Sound’s headquarters in Berkeley, California, the Acheron Designer’s drivers include one 12-inch low-frequency cone driver, housed in an optimally tuned, ported enclosure, and one high-frequency 4-inch diaphragm compression driver. The drivers yield uncompromising quality and are powered by sophisticated onboard amplification. The self-powered design ensures consistent results and simplifies installations in both new and existing rooms.

A proprietary two-channel, Class-D amplifier powers each driver channel independently. Onboard processing includes driver protection circuitry, an electronic crossover, and correction filters, ensuring flat frequency and phase responses. The rear-mounted, recessed heat sink yields efficient convection cooling, and allows the unit to be placed flat against walls, when necessary.

The optional RMS™ remote monitoring system provides comprehensive monitoring of system parameters on a Windows®-based computer.

The Acheron Designer enclosure is constructed of premium birch plywood and coated with a low-gloss, black-textured finish. The cabinet is fitted with two attachment points on the bottom for the optional MYA-DES cradle-style yoke, allowing the unit to be suspended from a single hanging point. An optional, black cloth grille frame is available for installations where the Acheron Designer is not placed behind a screen.
Acheron Designer Specifications

ACOUSTICAL

<table>
<thead>
<tr>
<th>Operating Frequency Range</th>
<th>Frequency Response</th>
<th>Phase Response</th>
<th>Maximum Peak SPL</th>
<th>Dynamic Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>37 Hz – 18 kHz, THD < 0.02%</td>
<td>38 Hz – 17 kHz, 4 dB</td>
<td>230 Hz – 17 kHz, ±30°</td>
<td>130 dB</td>
<td>110 dB</td>
</tr>
</tbody>
</table>

COVERAGE

- 80° horizontal ± 50° vertical
- 680 Hz

CROSSOVER

- 12° low-frequency cone driver:
 - Nominal impedance: 2 Ω
 - Voice coil size: 4”
- 4° compression driver:
 - Nominal impedance: 8 Ω
 - Voice coil size: 4”
 - Diaphragm size: 4”
 - Exit size: 1.5”

TRANSUCERS

- The loudspeaker shall be the Meyer Sound Acheron Designer.
- The cabinet bottom shall include protective, plastic skids, as well as two M6 attachment points for the optional MYA-DES cradle-style yoke.
- Each amplifier channel shall be Class-D. Burst capability for the low-frequency channel shall be 550 watts total with a nominal 8-ohm resistive load. Total burst power shall be 700 watts (4k000 peaks). Distortion (THD, IM, TIM) shall not exceed 0.02 percent. Performance specifications for a typical production unit shall be as follows, measured at 1/3-octave resolution:
 - Operating frequency range shall be 37 Hz to 18 kHz, phase response shall be ±30 degrees from 230 Hz to 17 kHz, maximum peak SPL shall be 130 dB at 1 meter, free field.
 - The audio input shall be electronically balanced with a 10 kΩ differential between pins 2 and 3.
 - Pin 1: Chassis/earth through 1 kΩ, 1000 pf, 15 V clamp network to provide virtual ground lift at audio frequencies.
 - Pin 2: Signal +
 - Pin 3: Signal –
 - The crossover point shall be 680 Hz.
 - The internal power supply shall perform automatic voltage regulation, EMI filtering, soft current turn-on, and surge protection for the low- and high-frequency sections. The crossover point shall be 680 Hz.
 - The AC power connector shall be a PowerCon locking connector.

ARCHITECT SPECIFICATIONS

The loudspeaker shall be a self-powered, full-range system; the transducers shall consist of a 12-inch diameter cone driver and a 4-inch diaphragm compression driver on an 80-degree horizontal by 50-degree vertical horn. The loudspeaker system shall incorporate internal processing electronics and a two-channel amplifier, one channel for each driver. Processing functions shall include frequency and phase correction, signal division, and protection for the low- and high-frequency sections. The crossover point shall be 680 Hz.

Each amplifier channel shall be Class-D. Burst capability for the low-frequency channel shall be 550 watts total with a nominal 8-ohm resistive load and 250 watts for the high-frequency channel with a nominal 8-ohm resistive load. Total burst power shall be 700 watts (4k000 peaks). Distortion (THD, IM, TIM) shall not exceed 0.02 percent. Performance specifications for a typical production unit shall be as follows, measured at 1/3-octave resolution: operating frequency range shall be 37 Hz to 18 kHz, phase response shall be ±30 degrees from 230 Hz to 17 kHz, maximum peak SPL shall be 130 dB at 1 meter, free field.

The audio input shall be electronically balanced with a 10 kΩ differential between pins 2 and 3. Pin 1: Chassis/earth through 1 kΩ, 1000 pf, 15 V clamp network to provide virtual ground lift at audio frequencies. Pin 2: Signal + Pin 3: Signal – Case: Earth ground and chassis.

DC Blocking
- Differential DC blocking up to the maximum common mode voltage (±50), typically 80 dB (50 Hz – 500 Hz).
- Common mode: 425 kHz; Differential mode: 142 kHz.

Nominal Input Sensitivity
- 10 dBV (3.2 V rms, 4.5 V peak) continuous is typically the onset of limiting for noise and music.

Audio source must be capable of producing ≥20 dBV (10 V rms, 14 V peak) into 600 Ω to produce the maximum peak SPL over the operating bandwidth of the loudspeaker.

AMPLIFIER

- Two-channel, Class-D
- Total Output: 700 W (1 x 550 W, 1 x 250 W)
- THD, IM, TIM: ≤0.02%
- Load: 2 Ω low channel; 8 Ω high channel
- Cooling: Convection, with recessed heat sink

AC POWER

- PowerCon® loop output
- Automatic, continuous range from 90 V AC to 265 V AC
- 100–240 V AC, 50/60 Hz
- 90 V AC on, no turn-off, only fuse-protect above 265 V AC
- Voltage Selection
 - 90 V AC, 115 V AC, 230 V AC

ARCHITECT SPECIFICATIONS

The loudspeaker shall be a self-powered, full-range system; the transducers shall consist of a 12-inch diameter cone driver and a 4-inch diaphragm compression driver on an 80-degree horizontal by 50-degree vertical horn. The loudspeaker system shall incorporate internal processing electronics and a two-channel amplifier, one channel for each driver. Processing functions shall include frequency and phase correction, signal division, and protection for the low- and high-frequency sections. The crossover point shall be 680 Hz.

Each amplifier channel shall be Class-D. Burst capability for the low-frequency channel shall be 550 watts total with a nominal 8-ohm resistive load and 250 watts for the high-frequency channel with a nominal 8-ohm resistive load. Total burst power shall be 700 watts (4k000 peaks). Distortion (THD, IM, TIM) shall not exceed 0.02 percent. Performance specifications for a typical production unit shall be as follows, measured at 1/3-octave resolution: operating frequency range shall be 37 Hz to 18 kHz, phase response shall be ±30 degrees from 230 Hz to 17 kHz, maximum peak SPL shall be 130 dB at 1 meter, free field.

The audio input shall be electronically balanced with a 10 kΩ differential between pins 2 and 3. Pin 1: Chassis/earth through 1 kΩ, 1000 pf, 15 V clamp network to provide virtual ground lift at audio frequencies. Pin 2: Signal + Pin 3: Signal – Case: Earth ground and chassis.

DC Blocking
- Differential DC blocking up to the maximum common mode voltage (±50), typically 80 dB (50 Hz – 500 Hz).
- Common mode: 425 kHz; Differential mode: 142 kHz.

Nominal Input Sensitivity
- 10 dBV (3.2 V rms, 4.5 V peak) continuous is typically the onset of limiting for noise and music.

Audio source must be capable of producing ≥20 dBV (10 V rms, 14 V peak) into 600 Ω to produce the maximum peak SPL over the operating bandwidth of the loudspeaker.

AMPLIFIER

- Two-channel, Class-D
- Total Output: 700 W (1 x 550 W, 1 x 250 W)
- THD, IM, TIM: ≤0.02%
- Load: 2 Ω low channel; 8 Ω high channel
- Cooling: Convection, with recessed heat sink

AC POWER

- PowerCon® loop output
- Automatic, continuous range from 90 V AC to 265 V AC
- 100–240 V AC, 50/60 Hz
- 90 V AC on, no turn-off, only fuse-protect above 265 V AC
- Voltage Selection
 - 90 V AC, 115 V AC, 230 V AC

ARCHITECT SPECIFICATIONS

The loudspeaker shall be a self-powered, full-range system; the transducers shall consist of a 12-inch diameter cone driver and a 4-inch diaphragm compression driver on an 80-degree horizontal by 50-degree vertical horn. The loudspeaker system shall incorporate internal processing electronics and a two-channel amplifier, one channel for each driver. Processing functions shall include frequency and phase correction, signal division, and protection for the low- and high-frequency sections. The crossover point shall be 680 Hz.

Each amplifier channel shall be Class-D. Burst capability for the low-frequency channel shall be 550 watts total with a nominal 8-ohm resistive load and 250 watts for the high-frequency channel with a nominal 8-ohm resistive load. Total burst power shall be 700 watts (4k000 peaks). Distortion (THD, IM, TIM) shall not exceed 0.02 percent. Performance specifications for a typical production unit shall be as follows, measured at 1/3-octave resolution: operating frequency range shall be 37 Hz to 18 kHz, phase response shall be ±30 degrees from 230 Hz to 17 kHz, maximum peak SPL shall be 130 dB at 1 meter, free field.

The audio input shall be electronically balanced with a 10 kΩ differential between pins 2 and 3. Pin 1: Chassis/earth through 1 kΩ, 1000 pf, 15 V clamp network to provide virtual ground lift at audio frequencies. Pin 2: Signal + Pin 3: Signal – Case: Earth ground and chassis.

DC Blocking
- Differential DC blocking up to the maximum common mode voltage (±50), typically 80 dB (50 Hz – 500 Hz).
- Common mode: 425 kHz; Differential mode: 142 kHz.

Nominal Input Sensitivity
- 10 dBV (3.2 V rms, 4.5 V peak) continuous is typically the onset of limiting for noise and music.

Audio source must be capable of producing ≥20 dBV (10 V rms, 14 V peak) into 600 Ω to produce the maximum peak SPL over the operating bandwidth of the loudspeaker.
At the heart of Meyer Sound’s EXP line of cinema products are the Acheron® high-performance screen channel loudspeakers. The Acheron Studio is a compact version of the Acheron 80, making it ideal for small theatres, re-recording stages, and postproduction facilities. Optimized for installation behind perforated screens, the two-way loudspeaker combines the advantages of self-powered technology and innovative horn design to deliver exceptional, precise coverage for the left, center, and right sound channels for cinema. Offering the same 38 Hz to 17 kHz frequency response as the Acheron 80, as well as a generous peak output with very low distortion, the Acheron Studio stands up to the most demanding of digital soundtracks, maintaining a wide dynamic range and full fidelity.

The Acheron Studio uses the same horn technology (patent pending) developed for the Acheron 80. Designed specifically for cinema use, the horn features a very soft rolloff outside its extremely well-behaved 80-degree horizontal by 50-degree vertical coverage pattern. The horn is fixed within the enclosure to ensure an accurate acoustic crossover, phase response, and an incredibly consistent vertical pattern. The 580 Hz crossover point places most of the dialog in the horn, which is ideal for cinema applications.

Designed and manufactured at Meyer Sound’s headquarters in Berkeley, California, the Acheron Studio’s drivers include one 15-inch low-frequency cone driver and one high-frequency 4-inch diaphragm compression driver. Both drivers yield uncompromising quality and full bandwidth and are powered by sophisticated onboard amplification. The proprietary Meyer Sound power amplifier is a two-channel, class AB/bridged amplifier with complementary MOSFET output stages that yields a total output of 700 W (1,400 W peak). Built-in signal processing includes an electronic crossover and correction filters — to achieve a flat phase and frequency response — along with driver protection circuitry. The self-powered design not only ensures consistent results but also simplifies installation in both new and existing rooms.

The optional RMS™ remote monitoring system allows comprehensive monitoring of system parameters on a Windows®-based computer. Constructed of premium birch plywood, the Acheron Studio enclosure is coated with a low-gloss, black-textured finish. An optional version of the loudspeaker is available with side rigging attachment points and MYA-AST mounting yoke.

Features & Benefits
- High peak power output with ultralow distortion
- Exceptional fidelity and extended high-frequency performance
- Constant-Q horn yields uniform response throughout coverage area
- Extraordinarily flat amplitude and phase response for tonal accuracy
- Seamless integration with HMS-10 surround loudspeakers and X-800C subwoofer

Applications
- Small theatres
- Custom, private theatres
- Re-recording stages
- Mixing for postproduction facilities
Acheron Studio Specifications

<table>
<thead>
<tr>
<th>ACoustical</th>
<th>Operating Frequency Range</th>
<th>Frequency Response</th>
<th>Dynamic Response</th>
<th>Maximum Peak SPL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>37 Hz – 18 kHz</td>
<td>38 Hz – 17 kHz ±4 dB</td>
<td>700 Hz – 17 kHz ±30°</td>
<td>134 dB – 110 dB</td>
</tr>
</tbody>
</table>

Coverage

- 80° horizontal x 50° vertical

Crossover

- 580 Hz

Transducers

- **Low Frequency**
 - Nominal impedance: 2 ohms
 - Voice coil size: 4" (29.9 mm)
 - Power handling capability: 400 W (AES)

- **High Frequency**
 - Nominal impedance: 8 ohms
 - Voice coil size: 4" (29.9 mm)
 - Diaphragm size: 4" (101.6 mm)
 - Exit size: 1.5" (38.1 mm)
 - Power handling capability: 250 W (AES)

Audio Input

- Type: Differential, electronically balanced
- Input Impedance: ±15 V DC, clipped to earth for voltage transient protection
- Wiring: Female XLR input with male XLR loop output
 - Pin 1: Chassis/earth through 220 kohm, 1000 pF, 15 V clamp network to provide virtual ground lift at audio frequencies
 - Pin 2: Signal +
 - Pin 3: Signal –
 - Case: Earth ground and chassis

DC Blocking

- Differential DC blocking up to the maximum common mode voltage:
 - +50 dB, typically 80 dB (50 Hz – 500 Hz)
 - Filter: Common mode: 425 kHz; Differential mode: 142 kHz

RF Filter

- Integral to signal processing (80 kHz)

Nominal Input Sensitivity

- 10 dBV (3.2 V rms, 4.5 V peak) continuous is typically the onset of limiting for noise and music

Input Level

- Audio source must be capable of producing +20 dBV (10 V rms, 14 V peak) into 600 Ω to produce the maximum peak SPL over the operating bandwidth of the loudspeaker

Amplifier

- Type: Two-channel complementary MOSFET output stages
- Output Power:
 - Total Output: 700 W (1 x 550 W, 1 x 250 W)
 - +0.2 dB (10 V rms, 14 V peak)
- Load: 2 Ω low channel, 8 Ω high channel
- Cooling: Convection

AC Power

- Connector: PowerCon
- Voltage Selection: Automatic, continuous range from 90 V AC to 265 V AC
- Safety Agency Rated Operating Range: 100–240 V AC, 50/60 Hz
- Maximum Long-Term Continuous Current: 10.0 A
- Burst Current (per sec): 7.4 A (115 V AC), 3.7 A (230 V AC), 8.5 A (100 V AC)
- RMS Network (optional): Equipped with two-conductor twisted-pair network, reporting all operating parameters of amplifiers to system operator’s host computer

Notes

1. Recommended maximum operating frequency range is limited by the loudspeaker.
2. Free-field measured with 1/3-octave frequency resolution at 4 meters.
3. Measured with music, free-field, referred to 1 meter.
4. At this frequency, the transducers produce equal sound pressure levels.
5. Power handling is measured under AES standard conditions; transducers driven continuously for two hours with a band limited noise signal having a 6 dB peak-average ratio.
6. Amplifier saturation levels are based on the maximum unclipped burst sine-wave rms voltage the amplifier will produce into the nominal load impedance: low-frequency channel, 33 V rms (66 V peak) into 2 ohms; high-frequency channel, 33 V rms (46 V peak) into 8 ohms.

Architect Specifications

The loudspeaker shall be a self-powered, full-range system; the transducers shall consist of a 15-inch diameter cone driver and a 4-inch diaphragm compression driver on an 80-degree horizontal by 50-degree vertical horn. The loudspeaker system shall incorporate internal processing electronics and a two-channel amplifier, one channel for each driver. Processing functions shall include frequency and phase correction, signal division, and protection for the low- and high-frequency sections.

Each amplifier channel shall be class AB/bridged with complementary MOSFET output stages. Burst capability for the low-frequency channel shall be 550 watts total with a nominal 2-ohm resistive load and 250 watts for the high-frequency channel with a nominal 8-ohm resistive load. Total burst power shall be 700 watts (1400 watts peak). Distortion (THD, IM, TIM) shall not exceed 0.02%. Performance specifications for a typical production unit shall be as follows, measured at 1/3-octave resolution: operating frequency range shall be 37 Hz to 18 kHz; phase response shall be ±30° from 700 Hz to 17 kHz; maximum peak SPL shall be 134 dB at 1 meter, free field.

The audio input shall be electronically balanced with a 10 kΩ impedance and accept a nominal 10 dBV (3.2 V rms, 4.5 V peak) signal. Connector shall be XLR (A-3) type female with parallel looping male. RF filtering shall be provided, and CMRR shall be greater than 50 dB from 50 Hz to 500 Hz.

The internal power supply shall perform automatic voltage regulation: continuous range from 90 V AC to 265 V AC, 50/60 Hz. Automatic, continuous range from 90 V AC to 265 V AC, 50/60 Hz. AC power cabling must be of sufficient gauge so that under burst current rms conditions, cable transmission losses do not cause the voltage to drop below the specified operating range at the loudspeaker.
At the heart of Meyer Sound’s EXP line of cinema products is the Acheron high-performance screen channel loudspeaker. Optimized for installation behind perforated screens, the two-way loudspeaker combines the advantages of self-powered technology and innovative horn design to deliver exceptional, precise coverage for the left, right, and center sound channels for cinema.

The Acheron loudspeaker is available in two full-range models: the Acheron 100, with a 100-degree horizontal by 50-degree vertical horn, which is ideal for wide theatres; and the Acheron 80, with an 80-degree horizontal by 50-degree vertical horn, which is suitable for more narrow theatres and re-recording stages.

The Acheron horn (patent pending) was specifically designed for cinema use and features a very soft roll-off outside the extremely well behaved coverage angle. The horn is fixed within the enclosure to ensure an accurate acoustic crossover, phase response, and an incredibly consistent vertical pattern between the low and high frequencies. The Acheron’s 580 Hz crossover point places most of the dialog in the horn, which is ideal for cinema applications.

Boasting a frequency response of 38 Hz to 17 kHz at ±4 dB, as well as a generous peak output of 139 dB with very low distortion, the Acheron stands up to the most demanding of digital soundtracks, maintaining a wide dynamic range and full fidelity. Designed and manufactured at Meyer Sound’s headquarters in Berkeley, California, the Acheron’s drivers include one 15-inch low-frequency neodymium magnet cone driver and one high-frequency 4-inch diaphragm compression driver. The drivers yield uncompromising quality and full bandwidth, making the Acheron suitable for small and medium theatres, re-recording stages, and production and postproduction facilities.

The Acheron’s sophisticated onboard amplification produces consistent and predictable results in any system design. The proprietary Meyer Sound power amplifier is a two-channel, class AB/H amplifier with complementary MOSFET output stages that yields a total output of 1685 W (3370 W peak). Built-in signal processing includes an electronic crossover and correction filters — to achieve a flat phase and frequency response — along with driver protection circuitry. The self-powered design not only ensures consistent results but also simplifies installation in both new and existing rooms.

The optional RMS™ remote monitoring system allows comprehensive monitoring of system parameters on a Windows®-based computer.

Strategically placed 3/8-inch threaded points on the side corners of the Acheron cabinet allow the unit to be fixed to floors with uptilt or downtilt using optional mounting brackets. The Acheron can also be mounted on top of the Acheron LF (also with uptilt or downtilt) using optional stacking brackets.

FEATURES & BENEFITS
- Exceptional fidelity and extended high-frequency performance
- Constant-Q horn yields uniform response throughout the coverage area
- Extraordinarily flat amplitude and phase response for tonal accuracy
- Wide horn coverage available for larger, wider rooms with the Acheron 100
- Narrow, focused coverage available for smaller rooms with the Acheron 80
- Seamless integration with the Acheron LF loudspeaker and HMS-10 surround loudspeaker

APPLICATIONS
- Small to medium-sized theatres
- Larger theatres with use of Acheron LF
- Re-recording stages
- Production and postproduction studios
To meet the SPL requirements for large rooms, the Acheron 80 and Acheron 100 can be daisy-chained with the Acheron LF loudspeaker, which has been carefully designed so its frequency and phase responses complement the Acheron.

The Acheron LF has the same low end frequency response as the Acheron (38 Hz) and rolls off at 320 Hz to avoid any interference in the crossover region of the Acheron. This coupling is optimized to allow a single parametric filter to achieve a flat frequency response with approximately 10 dB more of headroom in the low frequencies (depending on the room acoustics and loading conditions).

The audio input shall be electronically balanced with a 10 kOhm interface impedance and accept a nominal 10 dBV (3.2 V rms, 4.5 V peak) signal. Connectors shall be XLR (A-3) type male and female. RF interference suppression. Power requirements shall be nominal 100 V, 110 V, or 230 V AC line at 50 or 60 Hz. UL and CE operating voltage ranges shall be 95-125 V ~ 208-235 V ~ Auto-Voltage Select.

The internal power supply shall perform automatic voltage regulation from 50 Hz to 500 Hz. Each amplifier channel shall be class AB/H with complementary MOSFET output stages. Burst capability for the low-frequency channel shall be 1125 watts total with a nominal 4-ohm resistive load and 560 watts for the high-frequency channel with a nominal 8-ohm resistive load. Total burst power shall be 1685 watts (3370 watts peak). Distortion (THD, IM, TIM) shall not exceed 0.02%. Performance specifications for a typical production unit shall be as follows, measured at 1/3-octave resolution: operating frequency range shall be 37 Hz to 18 kHz; phase response shall be ±30° from 700 Hz to 17 kHz; maximum peak SPL shall be 139 dB at 1 meter, free field.

The audio input shall be electronically balanced with a 10 kOhm interface impedance and accept a nominal 10 dBV (3.2 V rms, 4.5 V peak) signal. Connectors shall be XLR (A-3) type male and female. RF interference suppression. Power requirements shall be nominal 100 V, 110 V, or 230 V AC line at 50 or 60 Hz. UL and CE operating voltage ranges shall be 95-125 V ~ 208-235 V ~ Auto-Voltage Select.

The internal power supply shall perform automatic voltage regulation from 50 Hz to 500 Hz. Each amplifier channel shall be class AB/H with complementary MOSFET output stages. Burst capability for the low-frequency channel shall be 1125 watts total with a nominal 4-ohm resistive load and 560 watts for the high-frequency channel with a nominal 8-ohm resistive load. Total burst power shall be 1685 watts (3370 watts peak). Distortion (THD, IM, TIM) shall not exceed 0.02%. Performance specifications for a typical production unit shall be as follows, measured at 1/3-octave resolution: operating frequency range shall be 37 Hz to 18 kHz; phase response shall be ±30° from 700 Hz to 17 kHz; maximum peak SPL shall be 139 dB at 1 meter, free field.

The audio input shall be electronically balanced with a 10 kOhm interface impedance and accept a nominal 10 dBV (3.2 V rms, 4.5 V peak) signal. Connectors shall be XLR (A-3) type male and female. RF interference suppression. Power requirements shall be nominal 100 V, 110 V, or 230 V AC line at 50 or 60 Hz. UL and CE operating voltage ranges shall be 95-125 V ~ 208-235 V ~ Auto-Voltage Select.

The internal power supply shall perform automatic voltage regulation from 50 Hz to 500 Hz. Each amplifier channel shall be class AB/H with complementary MOSFET output stages. Burst capability for the low-frequency channel shall be 1125 watts total with a nominal 4-ohm resistive load and 560 watts for the high-frequency channel with a nominal 8-ohm resistive load. Total burst power shall be 1685 watts (3370 watts peak). Distortion (THD, IM, TIM) shall not exceed 0.02%. Performance specifications for a typical production unit shall be as follows, measured at 1/3-octave resolution: operating frequency range shall be 37 Hz to 18 kHz; phase response shall be ±30° from 700 Hz to 17 kHz; maximum peak SPL shall be 139 dB at 1 meter, free field.

The audio input shall be electronically balanced with a 10 kOhm interface impedance and accept a nominal 10 dBV (3.2 V rms, 4.5 V peak) signal. Connectors shall be XLR (A-3) type male and female. RF interference suppression. Power requirements shall be nominal 100 V, 110 V, or 230 V AC line at 50 or 60 Hz. UL and CE operating voltage ranges shall be 95-125 V ~ 208-235 V ~ Auto-Voltage Select.

The internal power supply shall perform automatic voltage regulation from 50 Hz to 500 Hz. Each amplifier channel shall be class AB/H with complementary MOSFET output stages. Burst capability for the low-frequency channel shall be 1125 watts total with a nominal 4-ohm resistive load and 560 watts for the high-frequency channel with a nominal 8-ohm resistive load. Total burst power shall be 1685 watts (3370 watts peak). Distortion (THD, IM, TIM) shall not exceed 0.02%. Performance specifications for a typical production unit shall be as follows, measured at 1/3-octave resolution: operating frequency range shall be 37 Hz to 18 kHz; phase response shall be ±30° from 700 Hz to 17 kHz; maximum peak SPL shall be 139 dB at 1 meter, free field.

The audio input shall be electronically balanced with a 10 kOhm interface impedance and accept a nominal 10 dBV (3.2 V rms, 4.5 V peak) signal. Connectors shall be XLR (A-3) type male and female. RF interference suppression. Power requirements shall be nominal 100 V, 110 V, or 230 V AC line at 50 or 60 Hz. UL and CE operating voltage ranges shall be 95-125 V ~ 208-235 V ~ Auto-Voltage Select.

The internal power supply shall perform automatic voltage regulation from 50 Hz to 500 Hz. Each amplifier channel shall be class AB/H with complementary MOSFET output stages. Burst capability for the low-frequency channel shall be 1125 watts total with a nominal 4-ohm resistive load and 560 watts for the high-frequency channel with a nominal 8-ohm resistive load. Total burst power shall be 1685 watts (3370 watts peak). Distortion (THD, IM, TIM) shall not exceed 0.02%. Performance specifications for a typical production unit shall be as follows, measured at 1/3-octave resolution: operating frequency range shall be 37 Hz to 18 kHz; phase response shall be ±30° from 700 Hz to 17 kHz; maximum peak SPL shall be 139 dB at 1 meter, free field.

The audio input shall be electronically balanced with a 10 kOhm interface impedance and accept a nominal 10 dBV (3.2 V rms, 4.5 V peak) signal. Connectors shall be XLR (A-3) type male and female. RF interference suppression. Power requirements shall be nominal 100 V, 110 V, or 230 V AC line at 50 or 60 Hz. UL and CE operating voltage ranges shall be 95-125 V ~ 208-235 V ~ Auto-Voltage Select.

The internal power supply shall perform automatic voltage regulation from 50 Hz to 500 Hz. Each amplifier channel shall be class AB/H with complementary MOSFET output stages. Burst capability for the low-frequency channel shall be 1125 watts total with a nominal 4-ohm resistive load and 560 watts for the high-frequency channel with a nominal 8-ohm resistive load. Total burst power shall be 1685 watts (3370 watts peak). Distortion (THD, IM, TIM) shall not exceed 0.02%. Performance specifications for a typical production unit shall be as follows, measured at 1/3-octave resolution: operating frequency range shall be 37 Hz to 18 kHz; phase response shall be ±30° from 700 Hz to 17 kHz; maximum peak SPL shall be 139 dB at 1 meter, free field.
The Acheron LF loudspeaker can be paired with the Acheron 80 or Acheron 100 screen channel loudspeaker to deliver the low-frequency headroom required by larger theatres. The self-powered Acheron LF with dual 15-inch drivers boosts the headroom on the LCR channels by converting each Acheron loudspeaker to a system with three low-frequency drivers in an aligned column.

The unique multi-way, gradated design offers smooth coverage and maximum low-frequency impact with all drivers active at the lowest frequencies and each rolling off, one at a time, via the integral active crossover. This technique eliminates interference between drivers that would otherwise occur at shorter wavelengths, enabling the system to maintain ideal polar, phase, and frequency responses throughout the low and low-mid operating ranges. As a result, the system can deliver the necessary power to completely fill a large theatre with rich, clean sound, thereby ensuring that the full intensity and nuance so carefully crafted into today’s movie soundtracks reach every listener without compromise.

The Acheron LF was designed exclusively for use with Acheron loudspeakers. The Acheron LF’s 37 Hz to 370 Hz operating frequency range and 136 dB maximum peak SPL were carefully chosen to compliment the Acheron. The Acheron LF also features the same high-power 15-inch cone driver used in the low frequency section of the Acheron. Engineered to deliver optimum performance, the high-excitation, back-vented drivers include 4-inch voice coils and are housed in a tuned, vented enclosure that shares the same rectangular footprint as the Acheron.

The Acheron LF Loudspeaker

Acheron LF Architect Specifications

The loudspeaker shall be a self-powered bass system. The transducers shall consist of two 15-inch cone drivers (with 4-inch voice coils), each rated to handle 1200 AES* watts. The loudspeaker shall incorporate internal processing electronics and a two-channel amplifier. Each amplifier channel shall be class AB/H with complementary MOSFET output stages. Burst capability shall be 1125 watts total with a nominal 4-ohm resistive load. Total burst power shall be 2250 watts (4500 watts peak). Distortion (THD, IM, TIM) shall not exceed 0.02%. The audio input shall be electronically balanced with a 10 kOhm impedance and accept a nominal 10 dBv (0.775 V rms, 4.5 V peak) signal. Connectors shall be XLR type male and female. RF filtering shall be provided, and CMRR shall be greater than 50 dB (50 Hz ~ 500 Hz). Performance specifications for a typical production unit shall be as follows, measured at 1/3-octave resolution: operating frequency range shall be 37 Hz to 370 Hz; phase response shall be ±30° from 60 Hz to 230 Hz; maximum peak SPL shall be 136 dB at 1 meter, free field.

The internal power supply shall perform automatic voltage selection, EMI filtering, soft current turn-on, and surge suppression. Power requirements shall be nominal 100 V, 110 V, or 230 V AC line at 50 or 60 Hz. UL and CE operating voltage range shall be 100 to 240 V AC. Maximum peak current draw during burst shall be 19.0 A at 115 V AC, 9.5 A at 230 V AC, and 22.0 A at 100 V AC. Current inrush during soft turn-on shall not exceed 7 A at 115 V AC, 7 A at 230 V AC, and 10 A and 100 V AC. AC power connectors shall be locking NEMA L6-20 male inlet or IEC 309 male inlet.

Dimensions 31.00" w x 36.18" h x 20.50" d
Weight 185 lbs (83.91 kg)
Enclosure Premium birch plywood
Finish Low gloss, black textured
Mounting 3/8” threaded points on side corners for optional bracket adapters, which allow the Acheron LF to be mounted to floors; The Acheron 100 and Acheron 80 can be mounted on top of the Acheron LF with uptilt or downtilt.

The Acheron LF Loudspeaker system shall include support for the optional RMS remote monitoring system module.

All loudspeaker components shall be mounted in an acoustically vented enclosure constructed of premium birch plywood with a black textured finish. Dimensions shall be 31.00” wide x 36.18” high x 20.50” deep (787 mm x 919 mm x 521 mm). Weight shall be 185 lbs (83.91 kg). Optional bracket adapters shall allow the Acheron LF to be fixed to floors.

The loudspeaker shall be the Meyer Sound Acheron LF.

*Driven continuously for two hours with a band-limited noise signal having a 6 dB peak-average ratio.
Acheron Specifications

Acoustical

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Acheron 80/100</th>
<th>Acheron LF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Frequency Range</td>
<td>37 Hz – 18 kHz</td>
<td>37 Hz – 370 Hz</td>
</tr>
<tr>
<td>Frequency Response</td>
<td>38 Hz – 17 Hz 4 dB</td>
<td>38 Hz – 340 Hz 4 dB</td>
</tr>
<tr>
<td>Phase Response</td>
<td>700 Hz – 17 kHz +30°</td>
<td>60 Hz – 230 Hz +30°</td>
</tr>
<tr>
<td>Maximum Peak SPL</td>
<td>139 dB +110 dB</td>
<td>136 dB +110 dB</td>
</tr>
<tr>
<td>Dynamic Range</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Coverage

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acheron 80</td>
<td>80° horizontal x 50° vertical</td>
</tr>
<tr>
<td>Acheron 100</td>
<td>100° horizontal x 50° vertical</td>
</tr>
<tr>
<td>Acheron LF</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Transducers

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Low Frequency</th>
<th>High Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Frequency</td>
<td>One high–power 15” cone driver with neodymium magnet</td>
<td>Two high–power 15” cone drivers with neodymium magnets</td>
</tr>
<tr>
<td>Nominal impedance</td>
<td>4 Ω</td>
<td>4 Ω</td>
</tr>
<tr>
<td>Voice coil size</td>
<td>4”</td>
<td>4”</td>
</tr>
<tr>
<td>Power handling</td>
<td>1200 W (AES)</td>
<td>1200 W (AES)</td>
</tr>
<tr>
<td>Input Impedance</td>
<td>10 kΩ differential between pins 2 and 3</td>
<td></td>
</tr>
<tr>
<td>DC Blocking</td>
<td>Pin 1: Chassis/earth through 220 kΩ, 1000 pF, 15 V clamp network</td>
<td>Pin 2: Signal +, Pin 3: Signal –</td>
</tr>
<tr>
<td>CMRR</td>
<td>>50 dB, typically 80 dB (50 Hz – 500 Hz)</td>
<td></td>
</tr>
<tr>
<td>RF Filter</td>
<td>Common mode: 425 kHz, Differential mode: 142 kHz</td>
<td></td>
</tr>
<tr>
<td>Nominal Input Sensitivity</td>
<td>10 dB (3.2 V rms, 4.5 V peak) continuous is typically the onset of limiting for noise and music</td>
<td>10 dB (3.2 V rms, 4.5 V peak) continuous is typically the onset of limiting for noise and music</td>
</tr>
<tr>
<td>Input Level</td>
<td>Audio source must be capable of producing +20 dBV (10 V rms, 14 V peak) into 600 Ω to produce the maximum peak SPL over the operating bandwidth of the loudspeaker</td>
<td>Audio source must be capable of producing +20 dBV (10 V rms, 14 V peak) into 600 Ω to produce the maximum peak SPL over the operating bandwidth of the loudspeaker</td>
</tr>
</tbody>
</table>

Amplifier

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Complementary MOSFET</th>
<th>Complementary MOSFET</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Output stages (class AB/H)</td>
<td>Output stages (class AB/H)</td>
</tr>
<tr>
<td>Output Power</td>
<td>1685 W</td>
<td>2250 W</td>
</tr>
<tr>
<td>Total Output</td>
<td>1125 W low channel</td>
<td>1125 low channels</td>
</tr>
<tr>
<td>THD, IM, TIM</td>
<td><0.02%</td>
<td><0.02%</td>
</tr>
<tr>
<td>Load Capacity</td>
<td>4 Ω low channel</td>
<td>4 Ω low channels</td>
</tr>
<tr>
<td>Cooling</td>
<td>Forced air cooling, two internal fans (one ultra low–speed fan, one reserve fan)</td>
<td>Forced air cooling, two internal fans (one ultra low–speed fan, one reserve fan)</td>
</tr>
</tbody>
</table>

AC Power

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Draw</td>
<td>Acheron 80/100</td>
</tr>
<tr>
<td>Idle Current</td>
<td>0.71 A rms (115 V AC), 0.38 A rms (230 V AC), 0.79 A rms (100 V AC)</td>
</tr>
<tr>
<td>Max. Long-Term Continuous Current</td>
<td>5.8 A rms (115 V AC), 2.8 A rms (230 V AC), 6.3 A rms (100 V AC)</td>
</tr>
<tr>
<td>Burst Current</td>
<td>6.4 A rms (115 V AC), 3.2 A rms (230 V AC), 7.2 A rms (100 V AC)</td>
</tr>
<tr>
<td>Ultimate Short-Term Peak Current</td>
<td>26 A peak (115 V AC), 14 A peak (230 V AC), 28 A peak (100 V AC)</td>
</tr>
<tr>
<td>Inrush Current</td>
<td>7 A peak (115 V AC), 7 A peak (230 V AC), 10 A peak (100 V AC)</td>
</tr>
<tr>
<td>Current Draw</td>
<td>Acheron LF</td>
</tr>
<tr>
<td>Idle Current</td>
<td>0.64 A rms (115 V AC), 0.32 A rms (230 V AC), 0.85 A rms (100 V AC)</td>
</tr>
<tr>
<td>Max. Long-Term Continuous Current</td>
<td>8.8 A rms (115 V AC), 4.4 A rms (230 V AC), 10.0 A rms (100 V AC)</td>
</tr>
<tr>
<td>Burst Current</td>
<td>19.0 A rms (115 V AC), 9.5 A rms (230 V AC), 22.0 A rms (100 V AC)</td>
</tr>
<tr>
<td>Ultimate Short-Term Peak Current</td>
<td>39 A peak (115 V AC), 20 A peak (230 V AC), 45 A peak (100 V AC)</td>
</tr>
<tr>
<td>Inrush Current</td>
<td>7 A peak (115 V AC), 7 A peak (230 V AC), 10 A peak (100 V AC)</td>
</tr>
</tbody>
</table>

RMS Network (Optional)

Equipped with two-conductor twisted-pair network, reporting all operating parameters of amplifiers to system operator’s host computer.

Notes:

1. Recommended maximum operating frequency range. Response depends on loading conditions and room acoustics.
2. Measured free field with 1/3-octave frequency resolution at 4 meters.
3. Measured free field with music referred to 1 meter.
4. SPL for the Acheron LF calibrated to complement the Acheron 80/100 in the common frequency range.
5. At this frequency, the transducers for the Acheron 80/100 produce equal sound pressure levels.
6. Below this frequency, both Acheron LF transducers are active. Above this frequency, one transducer rolls off to avoid interaction in the higher frequencies (shorter wave-lengths) of the Acheron 80/100.
7. Power handling measured using AES standards. Transducers driven continuously for two hours with a band-limited noise signal having a 6 dB peak-average ratio.
8. Amplifier wattage rating based on the maximum unclipped burst sine-wave RMS voltage the amplifier will produce into the nominal load impedance: low frequency channel, 67 V rms (95 V peak) into 8 ohms, high frequency channel, 67 V rms (95 V peak) into 8 ohms.
9. AC power cabling must be of sufficient gauge so that under burst current rms conditions, cable transmission losses do not drop below the loudspeaker’s specified operating voltage range.

For more information, visit [Meyer Sound](www.meyersound.com) or contact techsupport@meyersound.com, F: +1 510 486.8356, T: +1 510 486.1166.